ЦМИД-ПС2

МЕДЛЕННО РЕАГИРУЮЩИЙ ВСПЕНИВАЮЩИЙСЯ ЭЛАСТИЧ-НЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИУРЕТАНОВОЙ СМОЛЫ

ЦМИД-ПС2 – МЕДЛЕННО РЕАГИРУЮЩИЙ ЭЛАСТИЧНЫЙ 2-X КОМПОНЕНТ-НЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИУРЕТАНОВОЙ СМОЛЫ, УВЕЛИЧИВАЮ-ЩИЙСЯ В ОБЪЕМЕ ДО 10 РАЗ ЧЕРЕЗ 60-120 МИНУТ ПОСЛЕ ВЗАИМОДЕЙ-СТВИЯ С ВОДОЙ.

ЦМИД-ПС2 применяется для заполнения трещин, холодных и рабочих швов, для эластичного склеивания деформационных швов методом инъектирования.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Применяется в гидротехническом, транспортном, промышленном и гражданском строительстве при ремонте и гидроизоляции бетонных, железобетонных, каменных и чугунных конструкций для:

- заполнения трещин, холодных и рабочих швов;
- эластичного склеивания деформационных швов;
- заполнения пустот и полостей;
- устройства отсечной гидроизоляции от подъема капиллярной влаги, просачивающейся через поры и микротрещины бетона:
- экстренной остановки фильтраций воды при бурении скважин.

СВОЙСТВА

- высокая стойкость к агрессивным средам:
- высокая проникающая способность (при низких рабочих давлениях инъекционного оборудования свободно проникает в трещины с раскрытием более 0.15 мм):
- высокая прочность сцепления с бетоном, камнем и чугуном (более 2,5 МПа);
- медленный срок схватывания состава при взаимодействии с водой 60-120 мин.

ПОРЯДОК РАБОТЫ

1. Подготовительные работы

Перед производством инъекционных работ в предварительно подготовленные

шпуры устанавливаются инъекционные металлические разжимные пакера. Температура основания и воздуха должна быть не менее +3°C и не более +40°C.

2. Приготовление состава

ЦМИД-ПС2 состоит из двух компонентов: - компонент A (основа) - жидкость светлого цвета;

- **компонент Б (отвердитель)** – прозрачная жидкость.

Смешивание компонентов производится в открытой невпитывающей (металлическая, пластиковая и т.п.) емкости в соотношении 1:1 (по объему). Сначала в емкость выливается компонент А, затем в него добавляется компонент Б при постоянном равномерном перемешивании. Перемешивание осуществляется с помощью миксера с низкой скоростью вращения (до 300 об/мин) в течение 2-3 минут. В случае использования двухкомпонентного насоса предварительное перемешивание компонентов не выполняется. Оптимальная температура применения от +15°C до +25°C. Более высокие температуры ускоряют реакцию.

Полная полимеризация материала происходит не ранее, чем через 1 сутки.

3. Производство работ

Нагнетание состава производится под давлением до 70 атм. с помощью одно-, двухкомпонентного инъекционного насоса.

Подачу состава в пакеры выполняют последовательно, передвигаясь в одном

направлении от пакера к пакеру. Через 24 часа после окончания работ по нагнетанию производится демонтаж пакеров и зачеканка шпуров материалом ЦМИД-3ГШ.

ОЧИСТКА ИНСТРУМЕНТА

В течение времени использования материала все рабочие инструменты и оборудование можно очистить специальным средством ЦМИД-ПС СО.

Затвердевший состав в оборудовании можно удалить только механическим путем.

ПРИМЕЧАНИЕ

В пункте «Порядок работы» представлены лишь общие указания по применению. Производитель работ, применяющий материал, обязан сам определять возможность его применения для конкретных целей. За дополнительными рекомендациями следует обратиться к специалистам компании ЗАО «НП ЦМИД».

УПАКОВКА

Материал поставляется в канистрах 5; 10; 20 кг.

УСЛОВИЯ И СРОК ХРАНЕНИЯ

12 месяцев с даты изготовления в закрытой оригинальной упаковке в сухом помещении при температуре +5... +30°C.

ТРАНСПОРТИРОВКА

Любым видом транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта. Обязательное предохранение упаковки от механических повреждений при перевозке.

МЕРЫ ПРЕДОСТОРОЖНОСТИ

- избегайте контакта с кожей;
- при нанесении следует надеть защитные очки, резиновые перчатки и специальный костюм;
- при попадании в глаза, немедленно промойте их водой и обратитесь к врачу;
- соблюдайте требования по безопасному производству работ и технике безопасности.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦМИД-ПС2

Наименование показателя	Единица измерения	Значение
РЕОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПОНЕНТОВ		
Плотность при 23°C	_	
– компонент А – компонент Б	г/см ³	1,10 1,20
Динамическая вязкость при 23°C — компонент А — компонент Б	мПа∙с	прим. 250 прим. 150
РЕОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛА ЦМИД-ПС2 (соотношение компонентов А:Б по объему 1:1)		
Плотность при 23°C	г/см ³	1,03
Динамическая вязкость при 23°C	мПа∙с	прим. 150
Время применения (жизнеспособность)	мин	не более 240
Минимальная температура применения	°C	+3
ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦМИД-ПС2 (после взаимодействия с водой)		
Увеличение объема при пенообразовании	-	при свободном расширении до 10 раз
Температура воспламенения	°C	более 100
Время полной полимеризации	час	24

РЕКОМЕНДУЕМОЕ ОБОРУДОВАНИЕ ДЛЯ ПРОИЗВОДСТВА РАБОТ ПО ИНЪЕКТИРОВАНИЮ ПОЛИМЕРНЫМИ СОСТАВАМИ

Фото оборудования	Технические характеристики оборудования
	Мембранный насос для инъекций. Рабочее давление 10-200 атм, подача 2,2 л/мин. Мощность двигателя 0,75 кВт.
	Поршневой насос для инъекций. Рабочее давление 0-400 атм, подача 4,0 л/мин. Мощность двигателя 0,75 кВт.
	Мембранный электрический инъекционный двух- компонентный насос. Максимальное давление: 30 бар. Производительность: 2,5 л/мин. Вес насоса: 60 кг (на тележке). Емкость бункера: 2x5 л.
	Электрический инъекционный двухкомпонентный насос. Максимальное давление: 200 бар. Вес насоса: 51 кг (на тележке).
	Пакер алюминиевый разжимной с кеглевидным ниппелем Ø 8-85 мм Ø 10-120 мм Ø 12-120 мм Ø 13-120 мм
	Пакер стальной разжимной с плоским ниппелем Ø 10-120 мм Ø 13-120 мм Ø 16-130 мм